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A method is proposed for the numerical solution of a nonlinear heat conduction 
problem with anisotropy, shape complexity, internal heat liberation, and other 
complicating factors taken into account. 

The necessity to develop universal programs for the machine design and optimization 
of evaporative cooling systems of electrotechnical equipment in indubitable. One of the 
fundamental calculational procedures of such programs is the solution of a heat conduction 
problem taking account of the real process progress conditions: the dependence of the co- 
efficients of heat transfer, thermophysical, electrophysical and other properties, as well as 
internal bulk heat liberation on the temperature, anisotropy, shape complexity, and diversity 
of boundary conditions (BC). Special attention has recently been paid to the development of 
universal machine-oriented algorithms [1-4]. Application of the energy balance method [5, 6] 
to construct finite-difference equations for the numerical solution of heat conduction prob- 
lems permits the creation of a universal algorithm, and the possibility appears for taking 
account of the advantages of the fundamental competitive method - the method of finite ele- 
ments [7, 8] - such as utilization of substantially nonregular meshes to partition the body 
into elements, a large quantity of element types and shapes being used, taking account of the 
complex inhomogeneous properties of the material, the simplicity of boundary condition 
representations, and the creation of universal programs. The advantages inherent in the 
finite difference method remain here: simplicity of problem formulation, initial data pre- 
paration, absence of the necessity to compute the stiffness matrix in each step when solving 
nonlinear problems. 

Let us consider the application of the energy balance method to formulate and solve a 
heat conduction problem with the complicating factors listed above taken into account. 

The energy balance can be written in the following form 

Q~+ Qv + Q, = o (1) 

for any body element in the stationary case. 

The characteristic components Qs for the analysis of evaporative systems are the heat 
transfer to the intermediate heat carrier during boiling or convection and to the surrounding 
air (BC of the third kind) 

Q~= =(T) S= (T-- T ), (2) 

heat elimination with a given heat flux density (BC of the second kind) 

Qq: q (T) Sq, (3) 

thermal contact in the solid body (for ideal contact, BC of the fourth kind) 

QR = Sc (T --  Te)/R (T) (4) 

and the thermal insulation condition Qin = O. 

Different BC can be given simultaneously on different element faces: 

Q~= Q~- Qq+ Q~- (5) 
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Fig. 2 

Relation between nodal points on a nonregular triangular 
mesh. 

Surface element of a body in a Cartesian coordinate system. 

In the presence of a distributed heat liberation source 

Qv = qv(T)V. (6) 

We consider determination of QX in the general case in an example of a plane triangular 
element (Fig. i). The nodal points C0-C 3 are the centers of mass of the appropriate tri- 
angular elements. The quantity of heat transmitted from element with center at the point CI 
to element with center C o can be determined from the formula 

~ F~sin~(T1--To) = kl(Tl--To), 

t h e r e f o r e ,  

Qz= O~q- Qr Q~= kl (T1-- To) Jr k~ (T~-- To) + k3(T3-- To). 

A f t e r  s u b s t i t u t i n g  (7) i n to  (1) and man ipu l a t i ng ,  we o b t a i n  

n 

(7) 

(8) 

We later examine a particular case for illustration: an orthotropic body in Cartesian 
coordinates with spatial mesh steps hx, hy, hz, respectively, in the coordinates x, y, and z. 

Equation (8) is converted to the form 

To= ~ -~y (FsT3-}- F~Ta) q- (FsTs+ FeTe) q- 

.-]- Q, (To) + Qv ( To) t /  [--~x ( F~+ F2) q-- - ~  ( F3-4- Fa)-f- - -~  ( Fs+ FG) ] . 

The s u r f a c e s  F1-Fs can be de te rmined  fo r  any nodal  po in t  by the  formulas  

huh-- z , . hyhz hxhz 
FI= ct - F.,= c 2 - - ;  F3 =: c3 --; 

4 4 4 

"hxhz hxhy hxhy Fa =- c a - - ;  F5 = c 5 - ;  F~= c 6 -  
4 4 4 

(9) 

(i0) 
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where cl-c s is the quantity of elementary volumes hxhyhz/8 , one of whose faces belongs to the 
surfaces FI-F~, respectively. It follows from Fig. 2 that 
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where  N i s  t h e  number o f  e l e m e n t a r y  vo lumes  c o m p r i s i n g  t h e  e l e m e n t  u n d e r  c o n s i d e r a t i o n  w i t h  
c e n t e r  a t  t h e  p o i n t  0. 

The s u r f a c e  o f  an e l e m e n t  l y i n g  on t h e  body b o u n d a r y  ( s h a d e d  s u r f a c e  in  F i g .  2) can  be 
determined from the formula 

S = lhxhu/4- }- mhxhd4 q- phyhd4. ( 11 ) 

Analysis of all possible variations of the surface point locations shows that the 
quantities s m, p can be determined by knowing the number of edges hx, hy, and h z connecting 
the surface nodal point under consideration (the center of the element) and the adjacent nodal 
points lying on the boundary surface. Let r x denote the number of edges hx, ry the number 
of edges hy, and r z the number of edges h z. Then 

l - r x ~ - r  u - r z ,  m = : r  x - r u q - 6 ,  p ~ - - r x + r u q - r z .  (12)  

For  i n s t a n c e ,  f o r  t h e  e l e m e n t  d i s p l a y e d  in  F i g .  2 we h a v e  r x = 2, r y  = 1, r z = 2, s = 1, m = 
3, p = l ,  S = h x h y / 4  + 3hxhz /4  + h y h z / 4 .  

I f  t h e  s u r f a c e  n o d a l  po in t  i s  on t h e  b o u n d a r y  be tween  two o r  more  s u r f a c e s  w i t h  d i f f e r e n t  
b o u n d a r y  c o n d i t i o n s ,  t h e n  1 /2  i s  appended  f o r  t h e  c o m p u t a t i o n  o f  t h e  numbers  r x ,  r y ,  and r z 
l y i n g  on t h e  b o u n d a r y .  

On t h e  b a s i s  o f  ( 2 ) - ( 6 ) ,  ( 9 ) - ( 1 1 ) ,  an a l g o r i t h m  i s  c r e a t e d  t h a t  p e r m i t s  a u t o m a t i c a l l y  
o b t a i n i n g  a s y s t e m  o f  e q u a t i o n s  o f  t h e  t y p e  (9 )  t o  d e t e r m i n e  t h e  t e m p e r a t u r e  f i e l d s  in  b o d i e s  
o f  complex  s h a p e  in  r e c t a n g u l a r  and c y l i n d r i c a l  c o o r d i n a t e s .  I n  a p r o g r a m  r e a l i z e d  on an 
e l e c t r o n i c  c o m p u t e r  a s u b p r o g r a m  i s  u s e d  t o  a n a l y z e  w h e t h e r  a n o d a l  p o i n t  b e l o n g s  t o  an e x -  
t e r n a l ,  i n t e r n a l ,  o r  s u r f a c e  domain o f  t h e  body w i t h  a s p e c i f i c  b o u n d a r y  c o n d i t i o n .  I n  t h e  
c a s e  when X i s  i n d e p e n d e n t  o f  t h e  t e m p e r a t u r e ,  c o n s t r u c t i o n  o f  t h e  c o e f f i c i e n t s  k n in  (8 )  
f o r  300 n o d a l  p o i n t s  on t h e  ES-1022 c o m p u t e r  does  n o t t a k e  more t h a n  one m i n u t e  o f  mach in e  
t i m e .  

For  c o m p a r i s o n  we s a y  t h a t  a n a l o g o u s  work p e r f o r m e d  in  c o n f o r m i t y  w i t h  t h e  a l g o r i t h m  [4] 
on t h e  M-222 c o m p u t e r ,  which  h a s  a p p r o x i m a t e l y  h a l f  t h e  f a s t - r e s p o n s e  o f  t h e  ES~1022, t a k e s  
up 5 min of machine time. 

In the numerical integration of the heat conduction equation it is ordinarily reduced to 
a system of linear algebraic equations for whose solution an extensively developed mathematical 
apparatus is used. Computation of the temperature field under conditions similar to the real 
ones results in a system of nonlinear equations, of the type (8), say, which is solved by 
iteration methods. In particular, application of the Zeidel method with conversion of the 
nonlinear terms in all nodal points on each iteration by the results of the preceding itera- 
tion [9] is known. The convergence of such a process in application to a system of equations 
of the type (8) has not been proved. 

The condition for approximation of the original differential equation and boundary 
conditions by a difference scheme when using the energy balance method is satisfied auto- 
matically since (8) is obtained from the same relationships as the differential equations 
with BC in the passage from infinitesimal increments to finite steps. Therefore, satisfac- 
tion of the stability condition [6] is necessary for convergence of the iterative process. 

The nonlinear terms Qs(T0) and Qv(T 0) are usually a source of instability of the differ- 
ence scheme (8). In practice, for all real problems it is possible to write 

Q~ (To) q- Qv (To) =- ~ (aiToq-bi) q = [ (To). 

Insertion of the error 6T 0 in the determination of To in a certain iteration results in 

change  of! [ (To): [ (Toq-6To)=[ (To) + 6Tof' (To) + 0 (6To 2) ~ f (To) q- 67'0 2 aiei (aiTo+ hi) ei-I in  t h e  n e x t  
i 
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Fig. 4 

Fig. 3. Temperature distribution in the evaporator wall of a two- 
phase siphon. 

Fig. 4. Vapor effect in a heat pipe: a) heat pipe construction, b) 
boiling mode change along the tube length; I) no heat transfer; II) 
bubbling mode; III) transition; IV) film. Tz0, ~ z, m. 

iteration. Therefore, in order for the calculational errors to have the tendency to de- 
crease from iteration to iteration it is necessary that 

~.~ a iei ( a i T o +  b~) e i -  1 
i 

n 

<I. (13) 

Condition (13) is satisfied only for a definite relationship between the thermophysical 
properties of the body and the characteristics of the heat liberation and heat exchange pro- 
cesses on the body boundaries, on the one hand, and the magnitudes of the difference mesh 
steps in both the numerator and denominator of (13), on the other. It should be noted that 
even upon satisfaction of the stability condition there is a serious obstacle to utilization 
of the difference scheme (8) - too slow convergence, in particular, for BC of the third kind 
assigned on certain surfaces. It is proposed to introduce a coefficient ~ analogous to the 
relaxation coefficient in relaxation methods 

Tio + '  = Tio+ m 

k~T,~+ Q~(TJo) + Qv(Tio) 
71 

~ kn 
tz 

to increase the rate of convergence in the difference scheme (8). 

The coefficients ~ are given separately for each group of nodal points characterizing 
their kind of nonlinearity. Numerical experiments show that 0 < ~ < 2. Introduction of the 
coefficients ~ permitted diminution of the computation time in different problems three or 
more times. Optimal values of ~ were determined in numerical experiments by using special 
test problems. 

The most widespread example of solving the nonlinear heat-conduction problem is the 
hardening or cooling of ingots [i0, ii]. Programs permitting the solution of similar problems 
are presented in [12], in particular, the most effective program for solving the nonlinear 
one-dimensional nonstationary problem by solving a system ofdifference equations by an 
iteration method [12, p. 185]. The Newton method is used to construct the system of differ- 
ence equations and the solution is by the factorization method at each iteration step. The 
algorithm proposed on the basis of the finite difference method was realized in the form of a 
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FORTRAN program with the application of the same principles and error estimates. Appropriate 
numerical results are obtained. The computation time of the temperature field on an "~lek- 
tronika DZ-28" electronic computer was approximately 14 min in each time layer for the algo- 
rithm proposed. 

Let us examine several examples. 

i. Temperature Distribution in a Two-Phase Thermal Siphon Wall. Represented in Fig. 3 
is a 1/8 part of a two-phase thermal siphon evaporator to cool a power semiconducting device, 
formed by three planes of symmetry. The following conditions are given on the body boundaries 

f --qS, S::S1,  

Qs=]a(T~ .... Ts~S, S=S~,  ~ : : c ( T ~ - - T ~ p  m 

~0, S =  $3. 

The step in all three spatial mesh directions is chosen constant, h = 0.0025 m. The body 
being computed consists of 1224 elements with volumes from h3/8 (corner elements) to h a (in- 
terior elements). 

The temperature field in an evaporator from an AMts alloy (X = 165 W/(m'K)) sec with 
coolant RII3 as heat carrier (c = 1449, n = 0.62, m = 0.36) is presented in Fig. 3 for 
Tta = 344.3 K, q = 3.26.10 s W/m 2. 

The computed data were compared with experimental results obtained by thermometry on a 
two-phase thermal siphon model by copper-constantan thermocouples mounted at different points. 
The greatest discrepancy was observed at the center of the heat delivery surface (the point A 
in Fig. 3) and was no more than 4%. 

2. Investigation of the Vapor Effect in a Heat Pipe. The copper heat pipe i (Fig. 4a) 
to cool a radio electronics element is filled with isopropyl alcohol 2. Heat from the object 
being cooled is delivered to a monel (I = 25 W/(m'K)) endface of the pipe 3. A vapor effect 
is observed within the pipe: the existence of film boiling mode is possible near the section 
z = z 0 and then the transition from film to bubble boiling sets in at a certain level z = z I, 
and the bubble mode at the level z = z 2. The heat-transfer coefficient can be determined from 
the formulas [13] 

21,1 (T~-- Tsa)2, 278< T~-- Tsa<300,1, 
3,08.10S(T,--Tsa) -3, 300,1<~T~--Tsa<379,3, 
256, T~-- Ts~379,3. 

The problem is solved under the follo~ng boundary conditions 

QS 

--qS, S =$1, 
r (Ts-- Tsa) S, S = S~, 
a2 (T~-- Ta) S, S = s3, 
o, s = s a .  

The number of steps in the z coordinate is 41 and in the r coordinate 7, and the problem 
is symmetric in the coordinate r 

Computations show that independently of the initial temperature field in the pipe a film 
boiling mode is set on the whole surface $2; strong heating of the element being cooled (the 
surface S I) to inadmissible temperatures occurs. The increase in the thermal resistance of 
the endface 3 because of the increase in L or the diminution of the heat conduction results 
in a reduction in the maximal temperature Tz0 on the surface z = z 0, improvement of heat trans- 
fer to S 2 on the whole, and consequently, to a reduction in the temperature of the object 
being cooled. The dependence of the boiling mode transition boundaries and the optimal 
length of the evaporation zone Zop t (the section on which all the heat deliverable to the end- 
face is transmitted by the heat carrier) on Tz0 for q = 5.1-10 s W/m 2, ~2 = i0 W/(m2.K), Tsa = 
355 K, T a = 293 K, L = 0.008 m, d = 0.007 m, 6 = 0.001 m is presented in Fig, 4b. 
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NOTATION 

C, center of the element; F, surface area of an element face, m2; L, length, m; P, 
pressure, Pa; Q, thermal flux, W; R, thermal contact resistance, (m2"K)/W; S, surface area 
of the body boundary, m2; T, temperature, ~ a, b, c, e, k, m, p, constants; r, x, y, z, ~, 
~, ~, coordinates; h, step of the spatial mesh, m; q, surface heat flux density, W/m2; qv, 
bulk heat flux density, W/m3; ~, heat-transfer coefficient, W/(m2"K); 6, thickness, m; ~, 
heat-conduction coefficient, W/(m'K); m, relaxation coefficient. Subscripts: i, number of 
the boundary condition; j, number of the iteration; n, number of the nodal point neighbor; q, 
heat supply; s, body surface; V, volume; m, medium; c, contact surface; in, insulation; sa, 
saturation; a, air. 
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